4 found
Order:
  1.  62
    On the Unification of Geometric and Random Structures through Torsion Fields: Brownian Motions, Viscous and Magneto-fluid-dynamics.Diego L. Rapoport - 2005 - Foundations of Physics 35 (7):1205-1244.
    We present the unification of Riemann–Cartan–Weyl (RCW) space-time geometries and random generalized Brownian motions. These are metric compatible connections (albeit the metric can be trivially euclidean) which have a propagating trace-torsion 1-form, whose metric conjugate describes the average motion interaction term. Thus, the universality of torsion fields is proved through the universality of Brownian motions. We extend this approach to give a random symplectic theory on phase-space. We present as a case study of this approach, the invariant Navier–Stokes equations for (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  2.  51
    Torsion Fields, Cartan–Weyl Space–Time and State-Space Quantum Geometries, their Brownian Motions, and the Time Variables.Diego L. Rapoport - 2007 - Foundations of Physics 37 (4-5):813-854.
    We review the relation between spacetime geometries with trace-torsion fields, the so-called Riemann–Cartan–Weyl (RCW) geometries, and their associated Brownian motions. In this setting, the drift vector field is the metric conjugate of the trace-torsion one-form, and the laplacian defined by the RCW connection is the differential generator of the Brownian motions. We extend this to the state-space of non-relativistic quantum mechanics and discuss the relation between a non-canonical quantum RCW geometry in state-space associated with the gradient of the quantum-mechanical expectation (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Surmounting the Cartesian Cut Through Philosophy, Physics, Logic, Cybernetics, and Geometry: Self-reference, Torsion, the Klein Bottle, the Time Operator, Multivalued Logics and Quantum Mechanics. [REVIEW]Diego L. Rapoport - 2011 - Foundations of Physics 41 (1):33-76.
    In this transdisciplinary article which stems from philosophical considerations (that depart from phenomenology—after Merleau-Ponty, Heidegger and Rosen—and Hegelian dialectics), we develop a conception based on topological (the Moebius surface and the Klein bottle) and geometrical considerations (based on torsion and non-orientability of manifolds), and multivalued logics which we develop into a unified world conception that surmounts the Cartesian cut and Aristotelian logic. The role of torsion appears in a self-referential construction of space and time, which will be further related to (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  4.  79
    Cartan–Weyl Dirac and Laplacian Operators, Brownian Motions: The Quantum Potential and Scalar Curvature, Maxwell’s and Dirac-Hestenes Equations, and Supersymmetric Systems. [REVIEW]Diego L. Rapoport - 2005 - Foundations of Physics 35 (8):1383-1431.
    We present the Dirac and Laplacian operators on Clifford bundles over space–time, associated to metric compatible linear connections of Cartan–Weyl, with trace-torsion, Q. In the case of nondegenerate metrics, we obtain a theory of generalized Brownian motions whose drift is the metric conjugate of Q. We give the constitutive equations for Q. We find that it contains Maxwell’s equations, characterized by two potentials, an harmonic one which has a zero field (Bohm-Aharonov potential) and a coexact term that generalizes the Hertz (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations